EP23-A™

Laboratory Quality Control Based on Risk Management; Approved Guideline

This document provides guidance based on risk management for laboratories to develop quality control plans tailored to the particular combination of measuring system, laboratory setting, and clinical application of the test.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute

Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI's consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Administrative Procedures.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Abstract

Clinical and Laboratory Standards Institute document EP23-A—Laboratory Quality Control Based on Risk Management; Approved Guideline provides guidance to laboratories on the development of quality control plans for measuring systems. Regulatory requirements, information provided by the manufacturer, information pertaining to the laboratory environment, and medical requirements for the test results are evaluated, using risk management principles, to develop a quality control plan tailored to the particular combination of measuring system, laboratory environment, and clinical application. The effectiveness of the laboratory quality control plan is monitored to detect trends, identify corrective actions, and provide continuous quality improvement. The advantages and limitations of various quality control processes are considered.

Contents

Abstract .. i

Committee Membership .. iii

Foreword .. vii

1 Scope .. 1

2 Introduction .. 1
 2.1 Quality Control Plan ... 1
 2.2 Risk Management ... 2

3 Standard Precautions .. 4

4 Terminology ... 4
 4.1 A Note on Terminology .. 4
 4.2 Definitions 5
 4.3 Abbreviations and Acronyms ... 9

5 Quality Control Toolbox .. 10
 5.1 Analysis of Quality Control Samples ... 10
 5.2 Controls Built Into the Measuring System .. 13
 5.3 Control Techniques Using Patient Test Results .. 14

6 Information Gathering for Risk Assessment .. 16
 6.1 Regulatory and Accreditation Requirements .. 16
 6.2 Information About the Measuring System .. 17
 6.3 Information About the Laboratory .. 17
 6.4 Information About the Clinical Application ... 18
 6.5 Process Mapping ... 18

7 Developing the Quality Control Plan ... 23
 7.1 Hazard Identification .. 23
 7.2 Risk Estimation .. 24
 7.3 Risk Evaluation .. 26
 7.4 Risk Control ... 27
 7.5 The Laboratory’s Quality Control Plan .. 27
 7.6 Example of Laboratory Risk Assessment for Glucose Concentration Measurement on an Automated Measuring System ... 28

8 Postimplementation Monitoring of the Quality Control Plan .. 28
 8.1 Evaluation of the Effectiveness of the Laboratory Quality Control Plan 28
 8.2 Investigating Unacceptable Performance and Corrective Action 29

References ... 30

Appendix A. Quick Guide Checklist for Establishing a Quality Control Plan Based on Risk Management .. 32

Appendix B. The Laboratory Risk Assessment: Example Glucose Measurement Using an Automated Measuring System .. 34
Contents (Continued)

Appendix C. Summary of Laboratory Risk Assessment Table. Example: Glucose Measurement on an Automated Measuring System ... 57

Appendix D. The Quality Control Plan Developed From the Individual Components of the Quality Control Strategies From Appendixes B and C. Example: Glucose Measurement on an Automated Measuring System .. 64

Appendix E. Example of Failure Investigation and Corrective Action for Glucose Measurement on an Automated Measuring System ... 66

The Quality Management System Approach ... 72

Related CLSI Reference Materials .. 73
Laboratory Quality Control Based on Risk Management; Approved Guideline

1 Scope

This document describes good laboratory practice for developing and maintaining a quality control plan (QCP) for medical laboratory testing using internationally recognized risk management principles. An individual QCP should be established, maintained, and modified as needed for each measuring system. The QCP is based on the performance required for the intended medical application of the test results. Risk mitigation information obtained from the manufacturer and identified by the laboratory, applicable regulatory and accreditation requirements, and the individual health care and laboratory setting are considered in development of the QCP. This document is intended to guide laboratories in determining quality control (QC) procedures that are both appropriate and effective for the test being performed.

This document may not satisfy the requirements of all regulatory, accreditation, or certification bodies. Laboratories need to comply with all applicable requirements in the development of their QCPs.

2 Introduction

2.1 Quality Control Plan

Health care providers need test results that are relevant, accurate, and reliable for patient care. A number of factors can adversely affect the quality of test results and present a risk of harm to the patient, from failures of the measuring system, to operator errors, to environmental conditions. Failure is used in this document in the context of risk management and means, in the broadest sense, a case when the system does not meet the user’s expectation. Failure includes the inability of a measurement process to perform its intended functions satisfactorily or within specified performance limits, errors of a measuring system that may produce an incorrect result, and incorrect use of a measuring system that may cause an incorrect result. Risk management is the systematic application of management policies, procedures, and practices to the tasks of analyzing, evaluating, controlling, and monitoring risk. QC in this document is defined as the set of operations, processes, and procedures designed to monitor the measuring system to ensure the results are reliable for the intended clinical use. QC in this context is broader than, although not necessarily exclusive of, the measurement of QC samples intended to simulate clinical patient samples.

A QCP is a documented strategy to mitigate and prevent errors in testing that describes the practices, resources, and sequences of specified activities to control the quality of a particular measuring system or measurement process to ensure intended purposes are met. The laboratory establishes QCPs to prevent failures and to detect nonconformities that may occur before incorrect results are reported to health care providers and clinical action is taken.

Development of a QCP requires an understanding of the preexamination (preanalytical), examination (analytical), and postexamination (postanalytical) processes, and identification of the weaknesses (potential failure modes) in these processes where failures can impact a given measuring system and potentially cause patient harm. Although this guideline addresses the examination phase, it is important to recognize that preexamination (preanalytical) and postexamination (postanalytical) processes are also important and may directly influence the acceptability of a measurement result. For example, sample collection, transport, and handling may contribute to the acceptability of a reported result.

The laboratory should manage risk by implementing QCPs that serve to ensure test result quality is appropriate for clinical use of the information by:

1) Monitoring the testing process for the occurrence of errors
2) Introducing control procedures to mitigate the occurrence of errors
Given the variety of testing performed in a typical health care facility, with particular measuring systems, examination (analytical) procedures, laboratory environments, and clinical applications, laboratories need guidance to determine effective combinations of control strategies to achieve reliable test results. This document discusses some of the QC tools available to the laboratory and summarizes their advantages and limitations. It describes an approach to develop a QCP that involves 1) collecting the necessary information from manufacturers, literature, regulatory and accreditation agencies, the laboratory’s particular environment, and the clinical application of test results; 2) conducting a risk assessment; and 3) identifying effective control measures to reduce risk.

In the risk management process, attempts are first made to identify and eliminate the causes of potential process and system failures before implementing measures to detect failures and/or their effects (eg, incorrect test results). Activities to monitor ongoing performance are directed toward the identification of unpredicted events that cause risks, modification of the QCP, and continual improvement (CI). Figure 1 depicts schematically the inputs needed to develop and continually improve a QCP.

Figure 1. Process to Develop and Continually Improve a QCP. (The terms corrective and preventive action and continual improvement are referred to as CAPA and CI, respectively, in risk management literature.)

2.2 Risk Management

Application of risk management to the entire life cycle of a laboratory measuring system is described for manufacturers in ISO 14971. The principles described are adapted in this document for use by laboratories to develop a QCP for measuring systems currently in use or introduced in a health care setting.
The Quality Management System Approach

Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system approach in the development of standards and guidelines, which facilitates project management; defines a document structure via a template; and provides a process to identify needed documents. The quality management system approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care service’s path of workflow (ie, operational aspects that define how a particular product or service is provided). The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The QSEs are as follows:

- Organization
- Personnel
- Process Management
- Nonconforming Event Management
- Customer Focus
- Purchasing and Inventory
- Documents and Records
- Assessments
- Facilities and Safety
- Equipment
- Information Management
- Continual Improvement

EP23-A addresses the QSE indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section on the following page.

Path of Workflow

A path of workflow is the description of the necessary processes to deliver the particular product or service that the organization or entity provides. A laboratory path of workflow consists of the sequential processes: preexamination, examination, and postexamination and their respective sequential subprocesses. All laboratories follow these processes to deliver the laboratory’s services, namely quality laboratory information.

EP23-A addresses the clinical laboratory path of workflow steps indicated by an “X.” For a description of the document listed in the grid, please refer to the Related CLSI Reference Materials section on the following page.
Related CLSI Reference Materials*

EP18-A2 Risk Management Techniques to Identify and Control Laboratory Error Sources; Approved Guideline—Second Edition (2009). This guideline describes risk management techniques that will aid in identifying, understanding, and managing sources of failure (potential failure modes) and help to ensure correct results. Although intended primarily for in vitro diagnostics, this document will also serve as a reference for clinical laboratory managers and supervisors who wish to learn about risk management techniques and processes.

GP02-A5 Laboratory Documents: Development and Control; Approved Guideline—Fifth Edition (2006). This document provides guidance on development, review, approval, management, and use of policy, process, and procedure documents in the medical laboratory community.

GP26-A4 Quality Management System: A Model for Laboratory Services; Approved Guideline—Fourth Edition (2011). This document provides a model for medical laboratories that will assist with implementation and maintenance of an effective quality management system.

M29-A3 Protection of Laboratory Workers From Occupationally Acquired Infections; Approved Guideline—Third Edition (2005). Based on US regulations, this document provides guidance on the risk of transmission of infectious agents by aerosols, droplets, blood, and body substances in a laboratory setting; specific precautions for preventing the laboratory transmission of microbial infection from laboratory instruments and materials; and recommendations for the management of exposure to infectious agents.

* CLSI documents are continually reviewed and revised through the CLSI consensus process; therefore, readers should refer to the most current editions.

©Clinical and Laboratory Standards Institute. All rights reserved.
Explore the Latest Offerings from CLSI!

As we continue to set the global standard for quality in laboratory testing, we’re adding initiatives to bring even more value to our members and customers.

The Key to Quality

From The Clinical and Laboratory Standards Institute (CLSI)

Power Forward with this Official Interactive Guide

Fundamentals for implementing a quality management system in the clinical laboratory.

Visit the CLSI U Education Center

Where we provide the convenient and cost-effective education resources that laboratories need to put CLSI standards into practice, including webinars, workshops, and more.

Find Membership Opportunities

See the options that make it even easier for your organization to take full advantage of CLSI benefits and our unique membership value.

Shop Our Online Products

Including eCLIPSE Ultimate Access™, CLSI’s cloud-based, online portal that makes it easy to access our standards and guidelines—anytime, anywhere.

For more information, visit www.clsi.org today.